(11) Patent Kokai [laid-open] Publication No.: Hei 11[1999]-222432 (12) PATENT KOKAI PUBLICATION (A) (19) JAPANESE PATENT OFFICE (JP) (21) Patent Application No.: Hei 10[1998]-21652 (22) Patent Application Date: February 3, 1998 | (51) Int. Cl. ⁶ | ID Codes | FI | | | |----------------------------|----------|---------------|-----|---| | A 61 K 31/435 | ADA | A 61 K 31/435 | ADA | | | | ABF | | ABF | | | | AED | | AED | | | 9/06 | | 9/06 | | G | | // C 07 D 471/04 | 105 | C 07 D 471/04 | 105 | Z | No. of Claims: 4 OL (Total 9 pages in Japanese original) Examination Request: Not Requested # (54) [TITLE OF THE INVENTION] EXTERNAL DRUG [PREPARATION] THAT INCLUDES AMIDE DERIVATIVE WHICH INDUCES INTERFERON # (57) [ABSTRACT] #### [SUBJECTS] To offer an external drug that includes new amide derivative that is useful as a treatment agent for atopic dermatitis and the like. # [MEASURES OF SOLUTION] An external drug comprising amide derivative that is shown with chemical formula I below, its acid added salt that can be medicinally tolerated, dissolution and absorption promoter, and a base. # [CHEMICAL FORMULA I] $$R_1R_2N - (CH_2)g - (X)h - (CH_2)i - (Y)j - (CH_2)k - (Z)i - (CH_2)n - CONH - (CH_2)n - N$$ (1) (In above formula, R1 and R2 show lower alkyl group and the like; X and Y are each independent and show oxygen atom, NR4, or CR5 and the like (R4 and R5 are each independent, and show hydrogen or aromatic ring and the like); and Z shows aromatic ring or complex ring; and R3 shows hydrogen, or lower alkoxy group and the like; g, i, k are each independent, and show $0 \sim 6$ integers; and h,j, and l are each independent and show 0 or 1 integers; and m shows $0 \sim 5$ integers; and n shows $2 \sim 12$ integers.) - (71) Applicant 000109543 Terumo Kabushiki Kaisha [Japanese Company or Corporation] 44-1, 2-chome, Hangatani, Shibuya-ku, Tokyo - (72) Inventor Takao IIZUKA c/o Terumo Kabushiki Kaisha 1500-banchi, Inokuchi, Nakai-cho, Ashikagajo -gun, Kanagawa-ken - (72) Inventor Ryoichi NANBA same as the above - (72) Inventor Eiji WATANABE same as the above - (72) Inventor Mieko UEDA same as the above [Amendments: There are no amendments attached to this patent.] [note: All names, addresses, company names and brand names are translated in the most common manner. Japanese language does not have singular or plural words unless otherwise specified with numeral prefix or general form of plurality suffix. Translator's note] # [CLÁIMS] [CLAIM ITEM 1] An external drug comprising amide derivative shown with chemical formula I below, its acid added salt that is medicinally tolerated, dissolution and absorption promoter, and base. [CHEMICAL FORMULA I] $$R_1R_2N - (CH_2)g - (X)h - (CH_2)i - (Y)j - (CH_2)k - (Z)i - (CH_2)m - CONH - (CH_2)n - N$$ (1) (In above formula, R1 and R2 show alkyl group of which carbon 1 through 6 may be branched; and R1 and R2 may become as one to form a ring. In addition, it is all right when either R1 or R2 may become one with X, Y, or optional atom in a methylene chain to form a ring. X and Y are each independent, and shows oxygen atom, S(O)_p (p shows 0 to 2 integers), NR4 CR5=CR6, or phenylene group that may be substituted with CR7R8. At this time, R1, R5, R6, R7 and R8 are each independent, and show hydrogen atom, lower alkyl group, hydroxyl group, lower alkoxy group, amino group, mono or di lower alkyl substituted amino group, carboxyl group, lower alkoxy carbonyl group, or aromatic ring group that may be substituted, or complex ring group that may be substituted. Z shows aromatic ring or complex ring; and it may include substitutent such as lower alkyl group, hydroxyl group, lower alkoxy group, or halogen. R3 shows hydrogen atom, phenyl group that may be substituted, lower alkyl group (it may be substituted with phenyl group, phenoxy group, benzyloxy group, lower alkoxy group, amino group, mono or di lower alkyl substituted amino group, carboxyl group, or lower alkoxy carbonyl group). g, i and k are each independent, and show 0 to 6 integers; and h, j and l are each independent, and show 0 to 6 integers; and m shows 0 to 5 integers; and n shows 2 to 12 integers.) # [CLAIM ITEM 2] The external drug according to the claim item 1, wherein content of amide derivative and its acid added salt that can be medicinally tolerated described in the claim item 1 is $0.001 \sim 10\%$ (w/w). #### [CLAIM ITEM 3] The external drug according to the claim item 1 or 2, wherein dissolution and absorption promoter that can dissolve said amide derivative and its acid added salt that can be medicinally tolerated is of at the least one type selected from alcohols (ethanol, ethylene glycol, propylene glycol, 1,3buttane diol, glycerol and the like) and/or higher fatty acid (isostearic acid, or oleic acid and the like) and/or dissolution and absorption promoter of which organic number being $30 \sim 1000$, inorganic number being $50 \sim 1000$ on the organic conceptual diagram defined in this patent, and ratio of inorganic number against organic number being within a range of $0.5 \sim 2.0$. # [CLAIM ITEM 4] The external drug according to the claim item $1 \sim 3$, wherein content of dissolution and absorption promoter within said external drug being $0.1 \sim 70\%$ (w/w). # [DETAILED EXPLANATION OF THE INVENTION] [0002] [PRIOR ART] External use of steroids or internal use of anti-histamines or anti-allergic agents have been basically and generally applied for treatments of atopic dermatitis; and besides these methods, desensitization treatment, allergen removal treatment (fleas, foods), PUVA (irradiation of solarene [transliteration]-long wavelength UV rays) or bacterial vaccination treatment method has been attempted for treatment of atopic dermatitis. However, none of these methods have been regarded as the definitive measure; and in particular, despite of its good efficacy, the steroid external preparation presents side-reactions through long term use such as atrophy of skin, expansion of capillary vessels, flush and redness or petechia, or easy infection. [0003] The direction of atopic dermatitis treatment is recently moving toward cytokine treatment with new mechanism away from the steroid (make reference to Hidemi NAKAGAWA: Clinical Immunology, 27[supple 16] 597-602, 1995; Shoko KOBAYASHI et al.: Clinical Immunology, 27[supple 16] 603-609, 1995). According to a strong theory applied to the atopic dermatitis patients, inflammation is triggered through IgE production or differentiation, propagation, or infiltration of inflammatory cells such as eosinophile as a result of increase production of cytokine such as interleukin-4 or interleukin-5 of Th2 cells that is caused by an unbalanced state of Th1 herpes cell and Th2 herpes cell, that is to say, a state of dominant Th2 cells. When antigen is administered to an infected human skin, it generally reaches maximum level immediately after such administration and after 4 ~ 8 hours of administration to present skin reaction that prolongs 24 ~ 48 hours. The former case is referred to as an extemporaneous reaction (contributed by IgE-swollen cells) and the latter case is referred to as a delayed-type allergic reaction. In particular, it has been pointed that that the delayed-type reaction to show a close relationship with pathological state of allergic disease that includes asthma. Although mechanism of delayed-type reaction has been unknown for quite some time, current thoughts include time-delayed phase in I-type allergic reaction contributed by IgE-swollen cells, that is to say, a late phase reaction of the type I allergy to indicate a close involvement of eosinophile caused by dominant Th helper cells (make reference to Motohiro KUROSAWA: Clinical Immunology, 27(5), 564-574, 1995). The balance of Th1 helper cells and Th2 helper cells is regulated by interferon; and interferon (α, γ) promotes differentiation of Th0 cells and Th1 cells. And therefore, use of interferon (α, γ) that corrects dominance of Th2 cells has been attempted for the treatment of atopic dermatitis. [0004] Regarding the main streams of interferon treatment methods, it includes subcutaneous injection of recombinant interferon α (make reference to Paulkkonen K. et. Al.: Act a, Derm. Venereol. 73, 141-142, 1993) or interferon γ (make reference to Hanifin, J.M.: J. Am. Dermatol. 28, 189-197, 1995, Nishioka K. et. Al.: J. Dermatol. 22(3), 181-185, 1995); and improvement on skin symptoms and reduction of eosinophile in blood have been reported. As interferon shows an immune reinforcement action, side-reactions such as easy inflammation and the like which are often observed in steroid are not recognized. However, it cannot not be regarded as a satisfactory drug from the standpoint of high cost and other side-reactions (fever, flu-like symptoms, headache). [0005] Although several issues remain in the interferon itself, when interferon inductive agent of low molecular weight compound is developed for its local application (external use), probability of solving said problems (cost and side-reactions) held by the external drug of steroid and interferon injection drug remains high. [0006] The interferon induction activity of these on men remains low, and in addition, eosinophile infiltration controlling action is not described. And therefore, the external drug that includes compound showing high interferon induction activity and controls infiltration of eosinophile at local regions of skin has been desired. [0007] # [SUBJECTS SOLVED BY THIS INVENTION] And therefore, this invention offers an external drug that includes new compound that is effective against atopic dermatitis and the like by having eosinophile infiltration controlling action by strong interferon induction activity and shows excellent absorbing action through skin. [0008] # [MEASURES USED TO SOLVE THE SUBJECTS] This invention that solves above-explained subjects are further explained below. [0009] The compound that
is included in this invention's external drug include amide derivative shown with chemical formula I below and its acid added salt that is medicinally tolerated to offer an external drug that includes dissolution and absorption promoter at sufficient quantity at the least to allow display of these effects. [0010] [CHEMICAL FORMULA 2] $$R_{1}R_{2}N-(CH_{2})g-(X)h-(CH_{2})i-(Y)j-(CH_{2})k-(Z)l-(CH_{2})m-CONH-(CH_{2})n-N-(CH_$$ [0011] (In above formula I, R1 and R2 show alkyl group of which 1 through 6 number of carbon atoms may be branched; and R1 and R2 may become one to form a ring. In addition, either R1 or R2 may become one with X, Y, or optional atom within a methylene chain to form a ring. [0012] X and Y are each independent, and show oxygen atom $S(O)_p$ (p shows 0 to 2 integer), NR1, CR5=CR6, CR7R8, or phenylene group that can be substituted. At this time, R4, R5, R6, R7, and R8 are each independent, and show hydrogen atom, lower alkyl group, hydroxyl group, lower alkoxy group, amino group, mono or di lower alkyl substituted amino group, carboxyl group, lower alkoxy carbonyl group, aromatic ring group that may be substituted, or complex ring group that may be substituted. [00|5] The g, i , and k are each independent, and show 0 to 6 integer; and h,j and 1 are each independent, and show 0 to 1 integer; and m shows 0 to 5 integer; and n shows 2 to 12 integer.) As for the acid added salt that can be medicinally tolerated by amide derivative, salts such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, acetic acid, lactic acid, maleic acid, fumaric acid, citric acid, malic acid, tartaric acid, oxalic acid, methane sulfonate, or p-toluene sulfonate and the like may be mentioned; and they may be adjusted by ordinary methods. [0016] Many of amide derivatives shown in the chemical formula I have asymmetric carbons within molecules and are racemic mixtures; however, each optical activity may be isolated to be used through optical resolution or asymmetric synthesis and the like. [0017] # [IMPLEMENTATION FORMAT OFTHIS INVENTION] The amide derivative shown with chemical formula I and its medicinally tolerable acid added salt (this will be hereafter referred to as acid added salt) of this invention may be administered as a treatment agent against atopic dermatitis. [0018] Dosage form of said external drug may include ointment, cream, lotion, gel, patch, or spray and the like. It is possible to use additives which can be tolerated medicinally or drug preparation during adjustment. As said additives, vehicles, binder, lubricant, disintegration, dilutant, flavoring, coloring agents, dissolution agent, suspension agents, emulsifiers, preservatives, buffer agents, isotonicity, ointment base, oil, auxiliary dissolution agent, absorption promoter, adhesive agent, or aerosol and the like may be mentioned. [0019] The amide derivative shown in the chemical formula I and its acid added salt show a controlling action against eosinophile infiltration; and therefore, these actions also suggest their efficacy against other diseases, for instance, allergic rhinitis, urticaria, pemphigoid, eosionophilic pustular foliculitis, or asthma. In addition, because it induces interferon α , γ strongly, it is also useful for various cancerous diseases such as multiple myeloma, cancer of kidney, malignant tumor of skin, cancer of bladder, hairy cell leukemia, or chronic bone marrow leukemia and the like, and chronic arthritis as well. In addition, this is applicable against various viral diseases such as B-type, C-type chronic active hepatitis, simple herpes keratitis, vaginal (penal) warts, pointed condyloma or wart, herpes zoster, or AIDS and the like. [0020] The most preferred compound which belong to the chemical formula I may be shown with a formula below. [0021] N-[4-(4-Amino-1H-imidazo[4,5-c]quinoline-1-y-butyl]-4-{[2-(dimethylamino) ethoxy] phenyl methyl} benzamide # [0022] [CHEMICAL FORMULA 3] $$\begin{array}{c|c} & & & \\ & & &$$ # [0023] This is hereafter abbreviated as compound (II). ## [0024] This compound may be, for instance, synthesized in the manner explained below. # [0025] 0.44g (1.47 mmol) of α -(2-dimethyl amino ethoxy)- α -phenyl-P-toluic acid is suspended in 10 ml of chloroform; and 0.21 ml (2.94 mmol) of thionyl chloride is added, and this is heated and refluxed for 2.5 hours. Reaction solution is condensed under reduced pressure to synthesize crude product of acid chloride; and then, 0.38 g (1.47 mmol) of 1-(4-amino butyl)1H-imidazo[4,5-c]quinoline-4-amine is dissolved in mixed solvent of ethanol 22 ml and water 15 ml; and 1.47 ml of 1N-sodium hydroxide aqueous solution is added, and then, 5 ml of suspended solution of chloroform of acid chloride given by chilling with ice is added, and this is stirred for 20 minutes. Reaction solution is poured into sodium hydrogen carbonate, and this is extracted with chloroform, and furthermore, with a mixture solution with chloroform methanol (10:1 (v/v), and organic layer is dried to hold and remove solvent; and residues are refined with alumina column chromatography (chloroform: methanol = 200:1 ~ 30:1 (v/v)). Lastly, it is filtered and collected through tertulation [transliteration] with ether to give slightly orange and white color powder (mp: 110 ~ 114°C) of the compound (II) 0.44 g(0.820 mmol). # [0026] The amide derivative shown in the chemical formula I and its acid added salt may be used so it would be $0.001 \sim 10\%$, or more preferably, $0.04 \sim 1\%$ within a base of external preparation (ointment, cream, lotion, gel). #### [0027] According to this invention, when external preparation is prepared by using amide derivative shown in the chemical formula I
and its acid added salt, it is first dissolved in dissolution and absorption promoter and is used. The dissolution and absorption promoter of this invention dissolve said compound at such concentration of at the least 0.01%; and in addition, it allows absorption of amide derivative shown in the chemical formula I and its acid added salt which are prepared as external drug through skin. In other words, it is capable of providing dissolution capacity as well as absorption capacity to amide derivative shown in the chemical formula I and its acid added salt. # [0028] ## [0030] - 1. ALCOHOLS (ethanol, 1,3-butane diol, or glycerol and the like) - 2. HIGHER FATTY ACIDS (isostearate, or oleic acid and the like) - 3. DISSOLUTION AND ABSORPTION PROMOTERS SHOWING organic number of 30 ~ 1000, and inorganic number of 50~1000 based on organic conceptual diagram, and ratio of inorganic number based on organic number being within a range of 0.5 ~ 2.0 of which examples include lower alkylene carbonic acid (propylene carbonate, or ethylene carbonate and the like): surfactants (sorbitan monolaurate (SP-20), sorbitan monostearate (SP-60), or DMSO and the like; monoglyceride (glycerol monostearate (MGS)), glycerol mono oleate; and crotamiton. # [0031] mixtures of these. According to the specification, the term organic conceptual diagram refers to plotting which are taken in following manner: base of all organic compounds is set as methane (CII4), and other compounds are all regarded as derivatives of methane to establish set numeral values on number of carbon atoms, substituent, metamorphosis part, and rings to seek organic number and inorganic number by adding the scores to plot this number on x axis for the organic number and y axis for the inorganic number. # [0032] This organic conceptual diagram was created by Mr. Kan [transliteration] FUJITA; and its details are explained in KUMAMOTO PHARMACEUTICAL BULLETIN vol. 1, 1 to 16 pages (1954), Domain of Chemistry, vol. 11, No. 10, 719 to 725 pages (1957), Fragrance Journal vol. 34, 97 to 111 page (1979), Fragrance Journal vol. 50, 79 to 82 pages (1981). ## [0033] And therefore, organic conceptual diagram of each compound may be readily sought by using the method described in above-explained references. # [0034] Dissolution and absorption promoter used in the compound (II) and its organic number and inorganic number are shown in the Table 1. # [0035] #### [TABLE 1] Organic number and inorganic number of dissolution and absorption promoter showing high solubility to the compound (II) and ratio of inorganic number based on organic number | compound | organic number | inorganic number | inorganic number/organic number | |-----------------|----------------|------------------|---------------------------------| | compound (II) | 630 | 597 | 0.95 | | | | | | | dissolution & | organic number | inorganic number | inorganic number/organic number | | absorption | | | | | promoters | | | | | crotamiton | 250 | 152 | 0.61 | | propylene carbo | onate 80 | 90 | 1.13 | #### [0036] On the one hand, when using such dissolution base, for instance, as cetyl lactate, diethyl sebacate, olive oil, or coconut oil (migliol [transliteration] 812) and the like which are used in general of which organic number and inorganic number being out of scope from those explained above on the compound (II), they show a very poor solubility and are not suited as dissolution and absorption promoters. # [0037] Organic number and inorganic number of these are shown in the Table 2. # [0038] [TABLE 2] Organic number and inorganic number of dissolution base that shows difficult dissolution against compound (II), and ratio of inorganic number based on organic number | compound (II) | organic number
630 | inorganic number
597 | inorganic number/organic number
0.95 | |------------------------------------|-----------------------|-------------------------|---| | dissolution & absorption promoters | organic number | inorganic number | inorganic number/organic number | | cetyl lactate | 380 | 160 | 0.42 | | diethyl sebacate | 280 | 120 | 0.42 | | olive oil | 1140 | 1 8 6 | 0.16 | | migliol 812 | 780 | 180 | 0.23 | ## [0039] According to this invention, a solution (includes dissolution and absorbing promoter) that includes amide derivative shown with the chemical formula I and its acid added salt is prepared as a drug by using a base for external drug and by already known measures in this field. As for the base, oil and fat base (white Vaseline, liquid paraffin, bleached honey wax, or caster oil and the like) may be mentioned. It is recommended to use these with appropriate combination. #### [0040] The external drug of this invention may include following in addition to above-explained base: other additives which may be used for external preparation such as perfume, coloring agent, absorption promoter such as higher alkenic acid, , or drugs effective against other skin disease. #### [0041] According to one view point of this invention, it offers manufacturing method of ointment by obtaining an external drug by dissolving amide derivative shown with the chemical formula I and its acid added salt in dissolution and absorption promoter, and by mixing thus given solution and base to give a mixture by stirring or heating and stirring, and then, by cooling this to give said external drug. # [0042] According to this method, it is all right to optionally add either the same or varied quantity of dissolution and absorption promoter used for the solution of more than one types of additives and amide derivative shown with chemical formula I and its acid added salt at the same time as the base. ## [0044] The external drug of this invention may be used by coating $1 \sim 6$ times /day to the affected region of the skin. #### [0045] [EXAMPLES] EXAMPLE 1 5% compound (II) ointment by this invention was adjusted by using components and method explained below. # [0046] 5g of compound (II) was heated and dissolved in 25 g of sorbitan monolaurate (SP-20) at 80°C (solution A). Said solution A was added to 70g of white Vaseline that was heated and dissolved at 80°C; and this was stirred for 10 minutes, and then, it was mixed while was cooled to room temperature. # [0047] #### EXAMPLE 2 1% compound (II) ointment by this invention was adjusted by using components and method explained below. #### [0048] 1 g of compound (II) was heated and dissolved in 10 g of sorbitan monolaurate (SP-20) at 80°C (solution A). Said solution A was added to 89 g of white Vaseline that was heated and dissolved at 80°C; and this was stirred for 10 minutes, and then, it was mixed while was cooled to room temperature. #### [0049] #### EXAMPLE 3 0.2% compound (II) ointment by this invention was adjusted by using components and method explained below. #### [0050] 0.2g of compound (II) was heated and dissolved in 10 g of sorbitan monolaurate (SP-20) at 80°C (solution A). Said solution A was added to 89.8 g of white Vaseline that was heated and dissolved at 80°C; and this was stirred for 10 minutes, and was mixed while was cooled to room temperature. #### [0051] # **EXAMPLE 4** 0.04 % compound (II) ointment by this invention was adjusted by using components and method explained below. #### [0052] 0.04 g of compound (II) was heated and dissolved in 10 g of sorbitan monolaurate (SP-20) at 80° (solution A). Said solution A was added to 89.96 g of white Vaseline that was heated and dissolved at 80°C; and this was stirred for 10 minutes, and then, it was mixed while was cooled to room temperature. [0053] #### EXAMPLE 5 0.008 % compound (II) ointment by this invention was adjusted by using components and method explained below. [0054] 0.008 g of the compound (II) was heated and dissolved in 10 g of sorbitan monolaurate (SP-20) at 80°C (solution A). Then, said solution A was added to 89.992 g of white Vaseline that was heated and dissolved at 80°C; and this was stirred for 10 minutes, and then, it was mixed while was cooled to room temperature. [0055] # **EXCAMPLE 6** 1% compound (II) ointment by this invention was adjusted by using components and method explained below. [0056] 1 g of compound (II) was heated and dissolved in 10 g of sorbitan monostearate (SP-60) at 80°C (solution A). Said solution A was added to 5 g of polyoxy ethylene (10) cured caster oil (this will be hereafter abbreviated as HCO-10) and 84g of white Vaseline which were heated and dissolved at 80°C; and then, this was stirred for 10 minutes, and it was mixed while was cooled to room temperature. [0057] #### **EXAMPLE 8** 1% compound (II) ointment by this invention was adjusted by using components and method explained below. [0058] 1g of compound (II) was heated and dissolved in 10 g of glycerol monostearate (MGS) at 80°C (solution A). Said solution A was added to 5 g of HCO-10 and 84g of white Vaseline which were heated and dissolved at 80°C; and this was stirred for 10 minutes, and it was mixed while was cooled to room temperature. [0059] #### **EXAMPLE 9** 1% compound (II) ointment by this invention was adjusted by using components and method explained below. [0060] 1g of compound (II) was heated and dissolved in 10 g of glycerol monooleate (MG)) at 80°C (solution A). Said solution A was added to 5 g of HCO-10 and 84g of white Vaseline which were heated and dissolved at 80°C, and then, it was stirred for 10 minutes, and was mixed while was cooled to room temperature. [0061] # **EXAMPLE 10** 1% compound (II) ointment by this invention was adjusted by using components and method explained [0063] EXAMPLE 11 1% compound (II) ointment by this invention was adjusted by using components and method explained below. [0064] lg of compound (II) was dissolved in mixed solution of 5 g of sorbitan monolaurate (SP-20) and 2 g of crotamiton which were heated at 80°C. Said solution A was added to 87 g of white Vaseline that was heated and dissolved at 80°C; and this was stirred for
10 minutes, and it was mixed while was cooled to room temperature. [0065] **EXAMPLE 12** 1% compound (II) cream by this invention was adjusted by using components and method explained below. [0066] 1 g of compound (II) was dissolved in 10 g of isostearate that was heated to 80°C; and then, 2 g of benzyl alcohol, 2.2 g of cetyl alcohol, 3.1 g of stearyl alcohol, 2.55 g of polysorbate 60, and 0.45 g of sorbitan monostearate were added at 80°C to dissolve by stirring (solution A). While on the one hand, 2 g of glycerol, 0.2 g of methyl Parabens, 0.02 g of propyl Paragens, and 76.48g of refined water were dissolved and was mixed homogeneously at 80°C (solution B). Solution A and solution B were heated to nearly the same temperature (75°C), and solution B was added to the solution A, and was mixed for 10 minutes in a Acc Homogenizer (AM-3) (made by Nihon Seiki Mfg.) (12000 rpm). Then, it was mixed at low rotation while was cooled with water. [0067] **EXAMPLE 13** 1% compound (II) lotion by this invention was adjusted by using components and method explained below. [0068] 1 g of compound (II) was dissolved in 69g of 1,3-butane diol heated to 70°C, and 30 g of purified water was added, and was stirred. [0069] **EXAMPLE 14** 1% compound (II) lotion by this invention was adjusted by using components and method explained below. [0070] 1 g of compound (II) was dissolved in 49 g of 1,3-butane diol heated to 70°C, and 50 g of purified water was added, and was stirred. [0071] [0073] # COMPARATIVE EXAMPLE 1 1% compound (II) ointment by this invention was adjusted by using components and method explained below. [0074] 1 g of compound (II) was heated and suspended in 10 g of migliol at 80°C (solution A). Said solution A was added to 89g of white Vaseline that was heated and dissolved at 80°C; and this was stirred for 10 minutes, and it was mixed while was cooled to room temperature. 1 [0075] Skin absorption test and pharmacological tests on the ointments of this invention are explained below. [0076] # INTERFERON INDUCTION ACTIVITY Human interferon $-\alpha$ measuring kit (by Otsuka Seiyaku) and human interferon-y measuring kit (BioSource International) were used on the compound (II) to determine IFN quantity by ELISA method to confirm high interferon induction activity. [0077] # SKIN ABSORPTION #### (1) TEST METHOD 4 weeks old hairless mice (male) were purchased from Nihon Clear K.K. [transliteration] to be used for experiments after 1 week of acclimation period. [0078] Transdermal absorption experiment was conducted in accordance with the method by Tomohiro INMA (Pharmacology Vol. 55 (2), 122 - 126, 1955). [0079] Back skin of the mice was cut out in an intact skin state, and this was attached to vertical 2 cell type membrane transmission experiment device (VIDREZX). The ointments (300 mg) adjusted in the example 2, example 8, and comparative example 1 were placed on donor cell skin; and receptor cell was filled with PBS that includes penicillin (50L/ml) and streptomycin (50 μg/ml). Receptor solution was held at set temperature (37°C) to conduct transmission experiment. 100 μn sampling was taken from the samples with time to determine drug by HPLC. [0800] Skin permeation speed of the drug was sought by the results given above. [0081] #### (2) RESULTS As shown in the Table 3, drugs of example 2 and example 8 were confirmed to show excellent transdermal absorption. [0082] ## [0083] #### CONTROLLING ACTION ON SKIN EOSINOPHILE INFILTRATION Controlling action of eosinophile infiltration of this drug is studied by using eosinophile infiltration model of mouse skin. # [0084] #### (1) TEST METHOD ## 1. METHOD OF RAISING ANIMALS 4 weeks old Balb/c mice (male) were purchased from Nihon Clear K.K.; and after they were acclimated for at least 1 week under room temperature 23 ±2°C, and humidity 50±10% condition (illumination time (8:00 - 20:00)); and they were subjected to the experiment. Experiments were conducted all under fasting; and during experiments after administration of to-be tested samples, water and feed were provided freely. (weight during experiment: 18 to 32g). # [0085] ## 2. SENSITIVITY AND TRIGGER To mite extract -Dp equivalent to 10 mf protein quantity (Cosmobio), 3.8 ml RO water, and 1.2 ml of isotonic sodium chloride solution were added to adjust a solution (original solution) with 2 mg/ml protein mass. The original solution was adjusted with isotonic sodium chloride solution to give 500 µg /ml protein mass; and 1/40 capacity whooping cough bacterium solution was added to give a sensitized solution. Sensitization was conducted by administering this solution 200 µl transdermally at the neck part of mice by using Myjector (made by Terumo Co.). This sensitization was conducted total of 3 times including initial sensitization and every 7 days. #### [0086] Trigger was conducted by administering 50 μ l of mite antigen solution that was adjusted to 200 μ g/ml protein concentration with isotonic sodium chloride solution after 21 days since initial sensitization to the back skin by using Myjector (made by Terumo Co.). # [0087] # COLLECTION OF SKIN AND OBSERVATION OF PATHOLOGICAL SAMPLES After 48 hours of trigger, mouse was destroyed by dislocating cervical part of spinal cord to peel out back skin to cut open 1 cm square centered at marked portion. Thus collected skin was placed in 10% neutral formaline buffer solution (using 15 ml centrifugal tube made by Corning) to leave undisturbed at room temperature for longer than 1 day to fix. Thus fixed skin was prepared as paraffin cut piece by an ordinary manner, and this was subjected lunar [transliteration] dye (cut out was conducted at two location at center of skin sample in perpendicular direction to body axis, and 2 mm above head side). Observation of samples was conducted by using optical microscope (400 x magnification) to calculate eosinophile per 1 cm of one cut piece. #### [0088] Control by drug (testing compound) was calculated with an equation shown below. # [0089] #### [formula 1] number of eosinophile of base administered group - number of eosinophile of to-be tested ## [0090] #### 4. ADJUSTMENT OF EACH TESTING DRUG Ointments of examples 3 ~ 5 were used. In addition, as an external preparation of betamethasone valerate, 0.12% of linderone [transliteration] V ointment (made by Shionogi Pharmaceutical) was used as it was. # [0091] # 5. ADMINISTRATION METHOD OF DRUGS Transdermal administration (Occlusive dressing technique (ODT)) Mouse was anesthetized with ether; and center of back part was shaved in such manner so not to damage the skin by using an electric shaver. Marking was applied to the portion equivalent to a trigger portion of the back part by using an oil-base magic marker. Coating of drug (testing compound) was conducted 3 cm square for pre-administration equivalent to the trigger portion that is the center of the back part, and 2 cm square centering trigger portion after trigger. In addition, a polyethylene made non-transparent sheet was placed to cover said coating part and was fixed with a stretch tape (made by Johnson & Johnson MEDICAL INC.: Elascotine [transliteration]). Contrast group was coated only with a base. # [0092] Administration dosage was set to 50 mg/day per one animal; and administration schedule was set for 1 days from the day prior to trigger as shown below. ## [0093] two days before trigger \rightarrow trigger date (immediately after trigger) \rightarrow next day of trigger (total of 3 times) # (2) RESULTS Table 4 shows control effects of each testing drug of 0.12 % betamethasone valerate of examples $3 \sim 5$ against eosinophile infiltration reaction by mite triggered mouse skin. Ointments of the examples 3 and 4 controlled eosinophile infiltration in the same manner as that of betamethasone valerate ointment (steroid). (refer to Table 4) #### [0094] | [00) 1] | | | | |------------------------|----------------------|--|----------------------| | [TABLE 4] Controlling | g effect against mit | te triggered mouse skin eosinophile ii | ifiltration reaction | | administered drug & | example number | number of eosinophile (pieces/cm) | controlling rate (%) | | administration dosage | | | | | non-sensitized animal | | | | | non-trigger | 3 | 12.0 ±3.0 | • | | sensitized animal | | | | | mite- trigger | | | | | base ointment | 8 | 1114.3 ± 155.1 | • | | example 3 | 8 | 316.9 ± 110.2 | 71.6 | | example 4 | 8 | 170.0± 33.2 | 84.7 | | example 5 | 7 | 542.7± 165.9 | 51.3 | | betamethasone valerate | | | | | ointment | 8 | 128.6± 40.3 | 88.5 | # [0095] # [EFFECTS OF THIS INVENTION] As explained above, mew external preparation can be obtained by this invention. The amide derivative that is included in this drug shows a strong interferon (α, γ) inducing action; and it is particularly useful for treatment of atopic dermatitis through the controlling effects against skin eosinophile infiltration. Translation requested by: Auber Staniec, OIPC Translation by: Mie N. Arntson, 512-331-7167 (19) 日本国特許庁 (JP) # (12) 公開特許公報(A) (11)特許出願公開番号 特開平11-222432 (43)公開日 平成11年(1999)8月17日 | (51) Int.Cl.* | 識別記号 | FI | | |----------------|-----------------|----------------|----------------------| | A 6 1 K 31/435 | ADA | A61K 31/43 | 35 ADA | | | ABF | | ABF | | | AED | | AED | | 9/06 | | 9/06 | 6 G | | // C07D 471/04 | 105 | C 0 7 D 471/04 | 4 105Z | | | | 審査請求 未 | 請求 請求項の数4 OL (全 9 頁) | | (21)出願番号 | 特膜平10-21652 | (71)出願人 00 | 0109543 | | | | テ | ルモ株式会社 | | (22)出顧日 | 平成10年(1998)2月3日 | 東 | 京都渋谷区幡ヶ谷2丁目44番1号 | | | | (72)発明者 飯 | 黎 黄 夫 | | | | 神 | 奈川県足柄上都中井町井ノ口1500番地 | | | | テ | ルモ株式会社内 | | | | (72)発明者 葉 | 波 亮一 | | | | 神 | 奈川県足柄上都中井町井ノ口1500番地 | | | | テ | ルモ株式会社内 | | | | (72)発明者 渡 | 辺 英二 | | | | 神 | 奈川県足柄上都中井町井ノ口1500番地 | | | | テ. | ルモ株式会社内 | | | | | 最終頁に続く | # (54) 【発明の名称】 インターフェロンを誘起するアミド誘導体を含有する外用剤 # (57)【要約】 [課題] アトピー性皮膚炎などの治療剤として有用な、 新規なアミド誘導体を含有する外川剤の提供。 【解決手段】下記式 1 で示されるアミド誘導体及びその
医薬的に許容しうる酸付加塩と溶解・吸収促進剤、及び 基剤よりなる外用剤。 【化1】 $R_{j}R_{j}N-(CH_{j})g-(XI)h-(CH_{j})i-(Y)j-(CH_{j})k-(Z)i-(CH_{j})m-CONH-(CH_{j})n-H-(CH$ (武中、RIとR2は低級アルキル基等、XとYは独立して終去にて、NR4、CR5位(R4、R5は独立して水 素、低級アルコキシ基等、g、i、kは独立して0~6 の整数 h j lt種立して0または1の整数 mは #### 【特許請求の範囲】 【請求項1】下記式1で示されるアミド誘導体及びその 医薬的に許容しうる酸付加塩と溶解・吸収促進剤、及び # 基剤よりなる外用剤。 【化工】 (式I中、R1およびR2は炭素数1から6の分岐してい てもよいアルキル基を表し、またRIとR2は一つになっ て環を形成していてもよい。またRLまたはR2のどちら かが、X、Yあるいはメテレン鎖中の任意の原子と一つ。 になって環を形成していてもよい。XおよびYは独立し て、酸素原子、S(O)p (pはOから2の整数を表 す。)、NR4、CR5=CR6、CR7R8あるいは置換 されていてもよいフェニシン基を表す。ここで、RI、 R5、R6、R7およびR8は独立して、水素原子、低級ア ルキル基、水酸基、低級アルコキシ基、アミノ基、モノ あるいはジ低級アルキル置換アミノ基、カルボキシル 基、低級アルコキシカルボニル基、置換されていてもよ い芳香環基、あるいは置換されていてもよい複素環基を 表す。2は芳香原または複素原を表し、低級アルキル 基、水酸基、低級アルコキシ基あるいはハコゲンのよう な置換基を有していてもよい。KBは水素原子、置換さ れていてもよいフェニル基、低級アルキル基(フェニル 展、フェノキシ基、ベンジルオキシ基、低級アルコキシ 基、アミノ基、モノあるいはジ低級アルキル置換アミノ 基、カルボキシル基、あるいは低級アルコキシカルボニ ル基で置換されていてもよい。)を表す。g、iおよび kは独立してOから6の整数を表し、h、jおよびlは 独立して0または1を表し、mは0から5の整数を、n に2から12の整数を表す。) 【請求項2】請求項1に記載のアミド誘導体及びその医薬的に許容しうる酸付加塩の外用剤中における含量が0.001~10%(w/w)である請求項1に記載の外用剤。 【請求項3】請求項1に記載のアミド誘導体及びその医薬的に許容しうる酸付加塩を溶解しうる溶解・吸収促進 例がアルコール類(エタノール、エチレングリコール、 プロビレングリコール、1,3ブタンジオール、グリセ ずれか1項に記載の外用剂。 【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、施力にインターフェロンを誘起し、皮膚好酸球浸潤反応を抑制するアトビー性皮膚炎などの治療剤として有用な新規なアミド誘導体を含有する外用剤である。 [0002] 【従来の技術】アトピー性皮膚炎の治療には、従来より 基本的にステロイド剤の外用と抗ヒスタミン剤あるいは 抗アレルギー剤の内服が行われており、その他、減感作 療法、アレルゲン(ダニ・食物)除去療法、PUVA (ソラレン-長波長紫外線照射)療法、細菌ワクチン療 法などが試みられている。しかし、いずれも決め手とな るものではなく、特にステロイド外用剤は、切れ味は良 いが長期連投による皮膚の萎縮・毛細血管拡張・潮紅・ 紫斑・易感染性などの副作用が問題となっている。 【0003】最近、アトピー性皮膚炎治療の方向はステロイドから作用メカニズムが新規なサイトカイン療法に向かいつつある(中川秀巳、臨床免疫、27 [supple 16] 597-602,1995、小林祥子ら、臨床免疫、27 [supple 16] 603-609,1995)。アトピー性皮膚炎患者においては、Th1ヘルパー細胞とTh2ヘルパー細胞のパランスの不均衡すなわちTh2細胞優位の状態にあり、Th2細胞からのインターロイギン-4やインターロイギン-5などのサイトカインの産生増大の結果、1g比産生や好酸球等の炎症細胞の分化・増殖・浸潤を増強し炎症が惹起されるという説が有力となっている。一般に、感作されたとりの皮膚に抗原を投与すると投与直後と4~8時間後に最大となり21~18時間持続する皮膚反応が生じる。前者を即時型反応(1gt-肥満細胞が関与)、後者を遅発型アレルギー反応と呼ぶ。特に遅発型反応は喘息を含むアレルギー ン $(\alpha_{\alpha}(x))$ はTh 0細胞のTh 1細胞への分化を促進する。従って、Th 2細胞優位を是正するインターフェロン (α, γ) がアトピー性支膚炎の治療に試みられるようになってきた。 【0004】インターフェロン療法の主流はリコンピナントなインターフェロンα (Paukkonen K. et. al.: Act a. Derm. Venereol. 73, 141-142, 1993) やインターフェロンγ (Hanifin J. M.: J. Am. Dermatol. 28, 189-197, 1993, Nishioka K. et. al.: J. Dermatol. 22(3), 181-185, 1993) の皮下注射であり、皮膚症状の改善と血中好酸球数の減少が報告されている。インターフェロンは免疫強化作用を有するのでステロイドでよく認められる易感染性等の副作用は認められない。しかし、高コストであることと別の副作用(発熱、感冒様症状、頭痛)が発現するという点でまだ満足できる薬物とは言えない。 【0005】インターフェロンそれ自身はまだ幾つかの問題を残しているが、低分子化合物のインターフェロン誘起剤が開発されればその局所適用(外川)によってステロイド外用剤及びインターフェロン注射剤の抱えている問題(コストと副作用)を解決できる可能性は高い。これまでインターフェロンを誘起する化合物が幾つか公知となっている。例えば、1-置換-1H-イミダゾ [4,5-c]キノリン-4-アミン類としては、抗ウイルス剤である1-イソプチル-1H-イミダゾ [4,5-c]キノリン-4-アミン (ノミキモド)を始めと して幾つか知られている(欧州特許第145340分、 米国特許第4689338号、米国特許第469834 8号、米国特許第4929624号、欧州特許第385 630号、米国特許第5346905号等)。 【0006】それらのヒトでのインターフェロン誘起活性は低く、また好酸球浸潤抑制作用も記載されていない。したがって、高いインターフェロン誘起活性を持つ化合物を含有し、皮膚局所において好酸球の浸潤を抑制する外用製剤が望まれる。 #### [0007] 【発明が解決しようとする課題】従って本発明は、強力なインターフェコン誘起活性による好酸球浸潤抑制作用と優れた経皮吸収性を有し、従ってアトピー性皮膚炎などに有効な新規な化合物を含有する外用剤を提供することにある。 [8000] 【課題を解決するための丁段】上記の課題を解決する本 発明は以下の辿りである。 【0009】本発明の外用剤に含まれる化合物は下記式 1で示されるアミド誘導体及びその医薬的に許容しうる 酸付加塩であり、これらを少なくとも効果を発揮するた めに十分な量の溶解・吸収促進剤を含有する外用剤を提 供する。 [0010] [化2] $$R_{1}R_{2}N-(CH_{2})g-(X)h-(CH_{2})i-(Y)j-(CH_{2})k-(Z)l-(CH_{2})m-CONH-(CH_{2})n-N$$ (1) 【0011】(式 I 中、RIおよびR2は炭素数 1から6の分岐していてもよいアルキル素を表し、またRとR2は一つになって爆を形成していてもよい。またRまたはR2のどちらかが、X、Yあるいはメチレン鎖中の任意の原子と一つになって環を形成していてもよい。 【0012】XおよびYは独立して、酸素原子、S(O)p(pは0から2の整数を表す。)、NRI、CR5=C R6、CR7R8あるいは置換されていてもよいフェニレ ン基を表す。ここで、R4、R5、R6、R7およびR8は 油力して 東東原で 肝処アルセルは 東熱は 肝処ア 基、ベンジルオキシ基、低級アルコキシ基、アミノ基、 モノあるいはジ低級アルキル置換アミノ某、カルボキシ ル基、あるいは低級アルコキシカルボニル基で置換され ていてもよい。)を表す。 【0015】g、iおよびkは独立して0から6の整数を表し、h、jおよび1は独立して0または1を表し、mは0から5の整数を、nは2から12の整数を表す。) 式1で示されるアミド誘導体に医薬的に許容しうる酸付加度レ1では 塩酸 単化水素酸 麻酔 暗酸 リン 【発明の実施の形態】本発明の式1で示されるアミド誘導体及びその医薬的に許容される酸付加塩(以下、酸付加塩と略す)は、アトビー性皮膚炎治療剤として投与することができる。 【(1018】外用剤の剤形は、軟膏、クリーム、ローション、ゲル剤、貼付剤、スプレーなどが挙げられる。いずれの剤形においても、調製の際に適当な医薬・製剤的に許容しうる添加物を用いることができる。添加物としては、賦形剂、結合剂、滑沢剂、崩壊剂、希釈剂、風味剤、着色剤、溶解剤、懸濁剤、乳化剤、保存剤、緩衡剂、等張化剂、軟膏基剤、オイル、溶解補助剂、吸収促進剂、接着剤、噴霧剤などが挙げられる。 【0019】式Iで示されるアミド誘導体及びその酸付加塩は、好酸球浸潤抑制作用を示すことから、それらの作用が効果を及ぼす他の疾患、たとえばアレルギー性鼻炎、じん麻疹、類天疱瘡、好酸球件膿疱性毛包炎、喘息 などに有用であることが示唆される。また、インターフェロンα、ッを強力に誘起することから、多発性背髄腫、腎癌、皮膚悪性腫瘍、膀胱癌、ヘアリー細胞白血病、慢性骨髄性白血病などの各種癌疾患と慢性関節リウマチにも有用である。さらに、B型、C型慢性活動性肝炎、単純ヘルヘス性角膜炎、性器疣、尖圭コンジローマ、帯状疱疹、AIDSなどの各種ウイルス性疾患にも適応可能である。 【0020】式1に属する最も好ましい化合物は次式で表される。 [() () () () N-[4-(4-Amino-III-imidazo[4, 5-c]quinoli n-1-yl) butyl]-4-[[2-(dimethylamino)ethoxy]phenylme thyllbenzamide [0022] [化3] 【0023】以下、化合物(Ⅱ)と略す。 【0024】この化合物は、例えば、以下の方法により 合成される。 合成される。 【0025】 a- (2-ジメチルアミノエトキシ) - a ーフェニルーP-トルイル酸 0.44g(1.47mmol)をクロコホルム 10mlに懸濁し、塩化チオニル 0.21ml(2.94mmol)を加え、2.5時間加熱還流する。反応液を減圧下濃縮し、酸クコライド体の粗生成物を合成した後、1-(4-アミノブチル)-1H-イミダゾ 【4,5-c】キノリン-4-アミン 0.38g(1.47mmol)をエタノール22mlと水15mlの混合溶媒に溶解し、1N-水酸化ナトリウム水溶液 1.47mlを加えた後、氷冷下で先に得られた酸クロライド体のクロコホルム 5ml 懸濁溶液を加え、20分間撹拌させる。反応液を炭酸水素ナトリウム水溶液に注ぎ、クロコホルムさら にクロロホルム-メタノール(10:1(v/v))混液で 抽出し、有機層を乾燥し、溶媒を留去し、残渣をアルミ ナカラムクロマトグラフィー (クロロホルム:メタノー 体及びその酸付加塩が外川剤とするに際して、予め溶解・吸収促進剤に溶解して用いられる。この発明の溶解・吸収促進剤とは、好ましくは化合物を少なくとも0.0 1%以上の濃度に溶解しうるもので、かつ外用剤として製剤化された際に式して示されるアミド誘導体及びその酸付加塩を皮膚から吸収しうるものを意味する。換言すれば式して示されるアミド誘導体及びその酸付加塩に溶解能と吸収能を付与しうるものである。 [0028] なお、溶解能または吸収能の一方のみを有するものも、この発明の溶解・吸収促進剤の範囲に包含されるものである。 【0029】上記2つの要件を満たす基剤を種々検討した結果、次のものが溶解・吸収促進剤として挙げられる。 【0030】1. アルコール類(エタノール、1, 3ブ タンジオール、グリセリン等) - 2. 高級脂肪酸(イソステアリン酸、オレイン酸等) - 3. 有機概念図上において有機性値が30~1000、 本明細書において、有機概念図とは、すべての有機化合物の根源をメタン (CT4) とし、ほかの化合物にすべてメタンの誘導体とみなしてその炭素数、置換基、変態部、環などにそれぞれ一定の数値を設定し、そのスコアを加算して有機性値及び無機性値を求め、この値を有機性値を変軸、無機性値をy軸にとった図上にブロットしていくものである。 【0032】この有機概念図は藤田穆氏の考案によるものであり、その詳細はKUMAMOTO PHARMA CEUTICAL BULLETIN、第1号、第1~ 16項(1954年)、化学の領域、第11巻、第10 5、719~725項(1957年)、フレグランスジャーナル、第34号、第97~111項(1979年)、フレグランスジャーナル、第50号、第79~82項(1981年)などに説明されている。 【0033】従って、各化合物の有機概念図はこれらの文献に記載の手法に従って、容易に求めることができる。 【0034】化合物(II)に好適に用いられる溶解・吸収促進剤とその有機性値と無機性値を表1に示す。 【0035】 【表1】 表 1 化合物(II)に対し高い溶解性を示す溶解・吸収促進剤の 有機性後、無機性値及び有機性値に対する無機性値の比 | 化合物 | 有機性値 | 無機性値 | 無機性値/有機性値 | |--------|------|------|-----------| | 化合物(Ⅱ) | 630 | 597 | 0.95 | | 溶解・吸収促進剤 | 有機性値 | 無機性値 | 無機性值/有機性值 | |----------|------|-------|-----------| | クロタミトン | 250 | 1 5 2 | 0.61 | | 炭酸プロピレン | 8 0 | 90 | 1,13 | | MGS | 420 | 260 | 0.62 | | MGO | 420 | 262 | 0.62 | | DMSO | 80 | 140 | 1.75 | | SP-20 | 360 | 4 4 5 | 1.24 | | SP-60 | 480 | 4 4 5 | 0.93 | 【0036】一方、化合物(II)に上述した有機性値および無機性値の範囲外で、一般的に使用される溶解基剤、例えば乳酸セチル、セバシン酸ジニテル、オリーブオイル、ヤシ油(ミグリオール812)等を用いると溶解性が著しく悪く、溶解・吸収促進剤として適さない。 【0037】これらの有機性値と無機性値を表2に示す。 [0038] 【表 2】 表2 化合物 (II) に対し難溶性を示す溶解基剤の有機性値、 無機性値及び有機性値に対する無機性値の比 | 化合物 | 有機性值 | 無機性値 | 無機性値/有機性値 | |--------|------|------|-----------| | 化合物(Ⅱ) | 630 | 597 | 0.95 | が好ましい。 【0040】この発明の外川利は、上記基剤に加えて、 香料、着色剤、防腐剤、高級マルテン酸のような吸収促進剤など外用剤に使用しうる他の添加物や、他の皮膚疾患に有効な薬剤が含まれてもよい、 【0041】この発明の1つの観点によれば、式1で示されるアミド誘導体及びその酸付加塩を溶解・吸収促進剤に溶解し、得られる溶液と基剤とを混合し、得られる混合物を攪拌または加熱攪拌し、ついで冷却して外用剤を得ることからなる軟膏剤の製法が提供される。 【0042】この方法で「以上の添加剤と、任意に、式 「で示されるアミド誘導体及びその酸付加塩の溶液に用いたのと同じかまたは異なる溶解・吸収促進剤の追加量とを、基剤と同時に加えてもよい。 【0043】なお、この発明の外用剤においては、式 I で示されるアミド誘導体及びその酸付加塩が一部結晶として存在する場合があるが、この場合もこの発明範囲内に包含される。 【0044】この発明の外用剤は皮膚の患部に101~ 6回塗布して使用する事ができる。 [0045] ## 【実施例】実施例1 本発明による5%化合物(II) 軟膏を以下の成分・方法により調整した。 【0046】化合物(II) 5gを、ソルビタンモノラウレート(SP-20) 25gに80℃で加熱溶解した(A液)。白色ワセリン70gを80℃で加熱溶解したものにA液を加え10分間撹拌し、次いで室温に冷却しながら混合した。 #### 【0047】実施例2 本発明による1%化合物(II) 武青を以下の成分・方法により調整した。 【0048】化合物(H) 1gを、ソルビタンモノラウレート(SP-20)10gに80℃で加熱溶解する(A液)。白色ワセリン89gを80℃で加熱溶解したものにA液を加え10分間攪拌し、次いで室温に冷却しながら混合した。 #### 【0049】実施例3 本発明による(). 2%化合物(計)軟膏を以下の成分・ 方法により調整した。 【0050】化合物 (II) 0.2gを、ソルビタンモノ する(A液)、自色ワセリン89.96gを80℃で加熱溶解したものにA液を加え10分間攪拌し、次いで主温に冷却しながら混合した。 【0053】実施例5 本発明による0.008%化合物(II) 軟膏を以下の成分・方法により調整した。 【0054】化合物(II) 0.008gを、ソルビタン モノラウレート(SP-20) 10gに80℃で加熱溶 解する(A液)。白色ワセリン89.992gを80℃ で加熱溶解したものにA液を加え10分間攪拌し、次い で室温に冷却しながら混合した。 #### 【0055】 実施例6 本発明による1%化合物(II) 軟膏を以下の成分・方法により調整した。 【0056】化合物(II) 1gを、ソルビタンモノステアレート(SP-60)10gに80℃で加熱溶解する(A液)。ポリオキシエチレン(10)硬化ひまし油(以下、IICO-10と略す)5g、白色ワセリン84gを80℃で加熱溶解したものにA液を加え10分間攪拌し、次いで室温に冷却しながら混合した。 【0057】実施例8 本発明による1%化合物 (II) 軟膏を以下の成分・方法により調整した。 【0058】化合物(II)1gを、モノステアリン酸グ リセリル(MGS)10gに80℃で加熱溶解する(A 液)。HCO-10 5g、自色ワセリン84gを80 でで加熱溶解したものにA液を加え 10分間攪拌し、次 いで室温に冷却しながら混合した。 【0059】実施例9 本発明による 1%化合物(II)
軟膏を以下の成分・方法により調整した。 【0060】化合物(II)1gを、モノオレイン酸グリセリル(MGO)10gに80℃で加熱溶解する(A液)。HCO-10 5g、白色ワセリン84gを80℃で加熱溶解したものにA液を加え10分間攪拌し、次いで室温に冷却しながら混合した。 【0061】実施例10 本発明による1%化合物(II) 軟膏を以下の成分・方法により調整した。 【0062】化合物(II) 1gを、1, 3-ブタンジオ ール5gに70℃で加熱溶解した(A液)。一方、ステ ## により調整した。 【0064】化合物(II) Tgを、80℃で加熱したソルビタンモノラウレート(SP-20) 5gとクロタミトン2gの混合溶液で溶解した(A液) HCO-10 5g、自色ワセリン87gを80℃で加熱溶解したものにA液を加え10分間攪拌し、次いで室温に冷却しながら混合した。 【0065】実施例12 本発明による1%化合物(II) クリームを以下の成分・ 方法により調整した。 【0066】化合物(II) 1gを、80℃で加熱したイソステアリン酸10gで溶解後、80℃下でベンジルアルニール2g、セチルアルコール2、2g、ステアリルアルコール3、1g、Polysorbate60 2、55g、ソルビタンモノステアレート0、45gを添加し攪拌溶解した(A液)。一方、グリセリン2g、メチルパラベン0、2g、プロビルバラベン0、02g、精製水76、48gを80℃の加温下で溶解し均(に混合した(B液)。A液、B液をほぼ同じ温度(75℃)に加温し、A液にB液を加えAcc Homogenizer(AM-3)(日本精機製作所)で10分間混合(12000rpm)した。次いで、水冷しながら低回転で15分間混合した。 【0067】実施例13 本発明による1%化合物 (II) コーションを以下の成分 ・方法により調整した。 【0068】化合物(II) 1 gを、70℃で加熱した 1.3-ブタンジオール69 gで溶解し、精製水30 g を加え攪拌した。 【0069】実施例14 本発明による I %化合物 (II) コーションを以下の成分 ・方法により調整した。 【0070】化合物(II) 1 g を、70℃で加熱した 1、3-ブタンジオール49 g で溶解し、精製水50 g を加え機伴した。 【0071】実施例15 本発明による 1 %化合物 (II) コーションを以下の成分 ・方法により調整した。 【0072】化合物(11) 1gを、70℃で加熱したソ ルビタンモノラウレート (SP-20) 10gで溶解 し、流動パラフィン89gを加え攪拌した。 【0073】比較例1 本発明による1%化合物(II) 軟膏を以下の成分・方法 により調整した。 【0074】化合物(II)1gを、ミグリオール812 10gに80℃で加熱し懸濁した(A液)。白色ワセリン89gを80℃で加熱溶解したものにA液を加えしの分間攪拌し、次いで宝温に冷却しながら混合した。 【0075】次にこの発明の軟膏についての経皮吸収試験及び薬理試験について述べる。 【0076】インターフェロン誘起活性 化合物 (II) について、ヒトインターフェロン-α測定 キット (大塚製薬) とヒトインターフェロン-γ測定キ ット (BioSource International) を使用してELISA法で IFN量を定量した結果、高いインターフェロン誘起活 性を有することが確認された。 【0077】経皮吸収性 (1) 試験方法 動物は4週齢のヘアレスマウス(雄)をH本クレア (株) より購入し1週間の馴化期間の後実験に供した。 【0078】経皮吸収性実験は引間知広らの方法:(薬剤学, Vol. 55(2), 122-126, 1995) に準じて行った。 【0079】マウスの背部皮膚を無傷の皮膚(インタクトスキン)状態で切り取り、縦型2セル型膜透過実験装置(VIDREZX)に取り付けた。実施例2、実施例8及び比較例1の方法で調整した軟膏(300mg)をドナセルの皮膚上に加え、レセブターセルにはペニシリン(50 L/ml)とストレブトマイシン(50μg/ml)を含むPBSを満たした。レセブター溶液を一定温度(37℃)に保ち、透過実験を行った。経時的にサンブルロから100μ1サンブリングし、HPLCにより薬物を定量した。 【0080】この結果より薬物皮膚透過速度を求めた。 【0081】(2)結果 表3に示すように実施例2及び実施例8の製剤が優れた 経皮吸収性を示すことが、確認された。 [0082] 【表3】 #### 表 3 薬物皮膚透過性 抑制効果を調べる。 【0084】(1)試験方法 #### ①動物飼育方法 動物は4週齡のBalb/cマウス(推)を日本クレア(株)より購入し室温23±2℃、湿度50±10%(照明時間(8:00-20:00)の条件下で1週間以上の馴化期間の後に実験に供した。実験はすべて非絶食下で行い、被験物投与後の実験期間中は自由に水及び飼料を摂取させた(実験時の体重:18~32g))。 【0085】②感作及び惹起 タンパク量10mm相当のダニ拍出物-Np (コスモバイオー)にRO水3.8ml、生理食塩水1.2mlを加えタンパク質量2mg/mlの溶液(原液)を調製した。原液を生理食塩水にてタンパク質量500μg/mlに調製した溶液に百日せき菌液を40分の1容量添加したものを感作溶液とした。感作はマイジェクター(テルモ社製)を用い、マウスの頸部の皮下にこの溶液を200μ1投与することによって行った。この感作方法で初回感作を含め7日おきに3回感作を行った。 【0086】惹起は初回感作21日後に、生理食塩水で200μg/mlのタンパク濃度に調製したダニ抗原溶液を背部皮内にマイジェクター(テルモ社製)を用いて50μ1投与することによって行った。 【10087】③皮膚回収及び病理標本の観察 惹起48時間後に頸椎脱臼によりマウスを屠殺し背部の皮膚を剥ぎ取り、マーキングした部分を中心に1cm四方に皮膚を切断した。回収した皮膚は10%中性ホルマリン緩衝液(コーニングの15ml遠沈管使用)に入れ1日以上室温で放置して固定した。固定した皮膚は、常法にしたがってパラフィン切片作成後、ルナ染色を応した (切り出しは体軸に対し垂直方向に皮膚サンブルの中央 と頭側2mm上方の2ヶ所で行った)。標本の観察は光 学顕微鏡(400倍)で、1切片1cm当たりの好酸球 数を計測した。 【0088】薬剤(被験化合物)による抑制は以下の式から算出した。 [0089] 【数1】 # 基材役与群の好酸球数一被験化合物役与群の好酸球数 #### 抑制率(%)= - # 基補投与群の好酸球数 ×100 【0090】④各被験薬物の調製 実施例3~5の軟膏剤を使用した。また、古草酸ベタメ タゾンの外用剤は0.12%リンデロンV軟膏(シオノ ギ製薬)をそのまま使用した。 【0091】⑤薬物投与方法 経攻投与(密封包帯法:Occlusive dressing technique (ODY)) マウスをエーテル麻酔して背部中央を電気バリカンで皮膚を傷つけないように除毛した。背部中央の惹起箇所にあたる部分にあらかじめ油性マジックで印を付けた。薬剤(被験化合物)の塗布は、背部の印をつけた部分を中心に前投与では3cm四方に、煮起後は惹起部分を中心に2cm四方に塗布した。さらに、塗布部を覆うようにボリエチレン製の不透性シートをのせ伸縮性テープ(Johnson & Johnson MEDICAL INC:エラスコチン)で固定し た。対照群は基材のみを塗布した。 【0092】投与量は一匹当たり50mg/dayとし、投与スケジュールは以下に示したように惹起前日より4日間連投した。 【0093】惹起前々日 → 惹起日(惹起直後)→ 惹起翌日(計3回) (2)結果 実施例3~5、0.12%吉草酸ベタメタゾン軟膏の各 被験薬物のダニ惹起マウス皮膚好酸球浸潤反応に対する 抑制効果を表4に示す。実施例3、4の軟膏は好酸球浸 潤を占草酸ベタメタゾン軟膏(ステロイド)と同等に抑 制した(表4)。 [0094] 【表4】 表4 ダニ激起マウス皮膚好酸球及類反応に対する抑制効果 | 投与薬物及び投与量 | 例数 | 好發球數(個/cm) | 初别字(2) | |--------------|------------|--------------|---------------| | 赤原作動物
非蒸足 | 3 | 12.0± 3.0 | | | 整作動物 | | | | | ダニ蕙起 | | | | | 基材软膏 | 8 | 1114.3±155.1 | - | | 実施例 3 | 8 | 316.9±110.2 | 71.6 | | 実施例 4 | 8 | 170.0± 33.2 | 84.7 | | 実施例 5 | 7 | 542.7±165.9 | 51.3 | | 吉草酸ペタメタソ゚ン軟ラ | ₹ 8 | 128.6± 40.3 | 88.5 | 惹起2日後の好職球数を各群 mean±S.E.で示した。 [0095] 【発明の効果】上述した通り、本発明により新規な外用 製剤が得られる。本製剤に含まれるアミド誘導体は強力 なインターフェコン (α、γ) 誘起作用を有し、皮膚好 酸球浸潤抑制効果により特にアトビー性皮膚炎の治療に 有用である。 フコントページの続き (72) 発明者 上田 美江子 神奈川県足柄上郡中井町井ノ口1500番地 テルモ株式会社内